
CPE 470 - CocoTB

Verification Challenges
● Verification is inherently software

○ Runs only in simulator

● Verilog / System Verilog originally
designed as HDL

○ Specialized for describing
hardware, not software

● System Verilog does have OOP
features

○ Steep learning curve
○ Less modernized

System Verilog Class

PYTHON TESTED THIS BENCH

Coco TB

● CocoTB introduces Python-based testbench development
○ It is NOT a simulator! It interacts with a simulator
○ Uses verilator, icarus, or industry-grade simulator under the hood

● Takes turns between python and simulator
○ Python Code Introduces New Data to DUT
○ Waits while simulator executes a time step
○ Back and forth between python and simulator of choice

Glossary
CocoTB: Coroutine Co-Simulation Test Bench
DUT: device under test, the top-level thing being tested

CocoTB Structure

● Use CocoTB in addition to (or instead of) verilog
test bench

○ Often useful to have both kinds

● Write multiple python tests
○ Every time tests hit a delay or clock event, will

defer to simulator
○ After event, simulator sends results back to

python

● Abstract common operations into python classes
○ Create more easily reusable blocks to drive

inputs and monitor outputs

Setting Up a Test
TOPLEVEL_LANG ?= verilog

SIM ?= icarus

VERILOG_SOURCES = top.sv # List of Source Files

Folders to look for source files

VERILOG_INCLUDE_DIRS = rtl

COCOTB_TOPLEVEL := top # CocoTB Version 2

TOPLEVEL := $(COCOTB_TOPLEVEL) # CocoTB Version 1

COCOTB_TEST_MODULES := top_test # CocoTB Version 2

MODULE := $(COCOTB_TEST_MODULES) # CocoTB Version 1

WAVES := 1 # Turn on waveforms

Call CocoTB's makefile

include $(shell cocotb-config --makefiles)/Makefile.sim

● Each test configured with a Makefile
○ Abstracts away the build

process for different simulators
○ Easy to switch between them

● Somewhat Language Agnostic
○ Could bring same testbench to

VDHL
○ Only switch lang and simulator

● Can turn waves on and off
○ Often don’t want waves for

sufficiently large tests

Interacting With DUT
dut.signal.value = 1

x = dut.signal.value

y = dut.module.signal.value

dut.signal.value = 0

await RisingEdge(dut.clk_w) # Timestep

dut.signal.value = 1

x = dut.signal.value

x will be 0

● Writing a Signal:

● Reading a Signal:
● Reading a Nested Signal:

● CocoTB always uses non-blocking
assignment (<=)

○ Values will not get updated in
your DUT until a timestep occurs

○ Reading a value reads the value
from the last time step, not
updated value

Simulation Time Steps

System Verilog CocoTB

#(1)

always begin

 #(20)

 clk <= ~clk;

end

@(posedge clk);

@(negedge clk);

assert (clk == 0);

await Timer(1, units="ns")

clock = Clock(dut.clk_i, 10)

cocotb.start_soon(clock.start())

await RisingEdge(dut.clk)

await FallingEdge(dut.clk)

assert clk == 0

Delay

Creating
a Clock

Clock Edge

Simulation only happens during a timestep. Each main SV time step has a CoCoTB analogue.

There is no version of system verilog’s wait, other than a while loop with delays / edges.

Assertions

CocoTB Concurrency

async def function1 (dut):

 pass

async def function2 (dut):

 pass

@cocotb.test()

async def main_test(dut):

 task1 = cocotb.start_soon(function1(dut))

 task2 = cocotb.start_soon(function2(dut))

 await task1

 await task2

● CocoTB uses Python’s asyncio
library to handle concurrency

● Declare functions as async to use
them as coroutines

○ Each can interact with DUT
○ Each can fail

● Use await to suspend a coroutine
as it waits for another one

● Equivalent to having multiple
always blocks in system verilog

CocoTB Tradeoffs
+ CocoTB enables use of a higher level language

+ Great for file IO, simulating external devices (VGA,
Memories, etc.)

+ Libraries for common interfaces (AXI, Wishbone,
etc.)

- Slower than raw SV simulation
- Python is slow enough, moving back and forth

between Python and Simulator is extra slow

- Can’t do top level integration
- In SV, can instantiate more than one module in

testbench and hook them up
- Can’t instantiate more than one module in cocotb
- If more modules are needed, have to create a

verilog wrapper top level module

CocoTB Bus Extension
 # Attach Wishbone Master to Bus

wbs = WishboneMaster(dut, "wbs", dut.wb_clk_i,

 width=32, # size of data bus

 timeout=10, # in clock cycle number

 signals_dict={"cyc": "cyc_i",

 "stb": "stb_i",

 "we": "we_i",

 "adr": "adr_i",

 "datwr":"dat_i",

 "datrd":"dat_o",

 "ack": "ack_o",

 "sel": "sel_i" })

Create Write Operation

wb_op = WBOp(adr,dat,0,sel=0xF)

wbs.send_cycle([wb_op])

Create Read Operation

wb_op = WBOp(adr,None,0,sel=0xF)

read_resp = wbs.send_cycle([wb_op])

● CocoTB allows powerful abstraction of
buses

○ Wishbone, AXI, etc.
○ Verify your design against open

source standards

● Can encapsulate signals in an object
○ Wishbone Example uses a

dictionary to define signal names
○ Abstracted reads and writes

CocoTB Example

https://github.com/cocotb/cocotb/blob/master/examples/adder/tests/test_adder.py

https://github.com/cocotb/cocotb/blob/master/examples/simple_dff/test_dff.py

https://github.com/cocotb/cocotb/blob/master/examples/adder/tests/test_adder.py
https://github.com/cocotb/cocotb/blob/master/examples/simple_dff/test_dff.py

References
● https://docs.cocotb.org/en/stable/
● https://indico.cern.ch/event/776422/attachments/1769690/2874927/coco

tb_talk.pdf
● https://www.chipverify.com/systemverilog/systemverilog-class

https://docs.cocotb.org/en/stable/
https://indico.cern.ch/event/776422/attachments/1769690/2874927/cocotb_talk.pdf
https://indico.cern.ch/event/776422/attachments/1769690/2874927/cocotb_talk.pdf
https://www.chipverify.com/systemverilog/systemverilog-class

