CPE 470 - CocoTB

\

Verification Challenges

System Verilog Class

e Verification is inherently software _
. . class myPacket;
© Runsonly in simulator bit [2:6] header:
bit encode;
bit [2:6] mode;
bit [7:0] data;
e Verilog / System Verilog originally bit stop;

designed as HDL)
. - o function new (bit [2:0] header = 3'hi, bit [2:©] mode = 5);
o Specialized for describing R hendir — fasdan:

hardware, not software this.encode

= [
this.mode = mode:
this.stop = 1;
endfunction

e System Verilog does have OOP

features functl?n display ();
o St | . $display ("Header = Ox%Bh, Encode = %0b, Mode = ©x%eh, Stop = %6b",
eep earnm_g curve this.header, this.encode, this.mode, this.stop):
o Less modernized cndtanct Ao

endclass

YOU'RE TELLING ME

A PYTHON TESTED THIS BENCH

Glossary
c TB CocoTB: Coroutine Co-Simulation Test Bench
OCO DUT: device under test, the top-level thing being tested

e CocoTB introduces Python-based testbench development

o Itis NOT a simulator! It interacts with a simulator

o Uses verilator, icarus, or industry-grade simulator under the hood
o Takes turns between python and simulator

o Python Code Introduces New Data to DUT

o Waits while simulator executes a time step

o Back and forth between python and simulator of choice

f Python \ Simulator \

/ Test \ e ‘
| — Y
Embad —
GPl 1 VHPI
Extend \::
Coroutine —— EH
DUT
- J (Verilog / VHDL)

CocoTB Structure

e Use CocoTB in addition to (or instead of) verilog

test bench A _—
o Often useful to have both kinds ython Tes Python Tes

e Write multiple python tests
o Every time tests hit a delay or clock event, will

defer to simulator
. VPI/NVPHI
o After event, simulator sends results back to Intarface

python

e Abstract common operations into python classes
o Create more easily reusable blocks to drive
inputs and monitor outputs

Setting Up a Test

Each test configured with a Makefile

O

O

Abstracts away the build
process for different simulators
Easy to switch between them

Somewhat Language Agnostic

O

O

Could bring same testbench to
VDHL
Only switch lang and simulator

Can turn waves on and off

O

Often don’t want waves for
sufficiently large tests

TOPLEVEL_LANG ?= verilog
SIM ?= icarus

VERILOG_SOURCES = top.sv # List of Source Files
Folders to look for source files

VERILOG_INCLUDE_DIRS = rtl
COCOTB_TOPLEVEL = top # CocoTB Version 2
TOPLEVEL := $(COCOTB_TOPLEVEL) # CocoTB Version 1

COCOTB_TEST_MODULES := top_test # CocoTB Version 2
MODULE := $(COCOTB_TEST_MODULES) # CocoTB Version 1

WAVES := 1 # Turn on waveforms

Call CocoTB's makefile
include $(shell cocotb-config --makefiles)/Makefile.sim

Interacting With DUT

e Writing a Signal: dut.signal.value =1
) _ x = dut.signal.value
e Reading a Signal: .
e Reading a Nested Signal: y = dut.module.signal.value

_ dut.signal.value = ©
e CocoTB always uses non-blocking

assignment (<=) await RisingEdge(dut.clk w) # Timestep
o Values will not get updated in
your DUT until a timestep occurs
o Reading avalue reads thevalue x = dut.signal.value
from the last time step, not)
updated value # x will be ©

dut.signal.value =1

Simulation Time Steps

Simulation only happens during a timestep. Each main SV time step has a CoCoTB analogue.
System Verilog CocoTB
Delay #(1) await Timer(1, units="ns")

always begin

Creating #(20) clock = Clock(dut.clk i, 10)
a Clock clk <= ~clk; cocotb.start_soon(clock.start())
end
@(posedge clk); await RisingEdge(dut.clk)
Clock Ed
ock Edee @(negedge clk); await FallingEdge(dut.clk)
Assertions assert (clk == 0); assert clk ==

There is no version of system verilog’s wait, other than a while loop with delays / edges.

CocoTB Concurrency

CocoTB uses Python’s asyncio
library to handle concurrency

Declare functions as async to use

them as coroutines
o Each can interact with DUT
o Each can fail

Use await to suspend a coroutine
as it waits for another one

Equivalent to having multiple
always blocks in system verilog

async def functionl (dut):
pass
async def function2 (dut):

pass

@cocotb.test()

async def main test(dut):
taskl = cocotb.start _soon(functionl(dut))
task2 = cocotb.start_soon(function2(dut))
await taski

awalit task2

CocoTB Tradeoffs

+ CocoTB enables use of a higher level language

+ Great for file 10, simulating external devices (VGA,
Memories, etc.) [Python TestJ [Python Test]
+ Libraries for common interfaces (AXI, Wishbone, I
etc.)

- Slower than raw SV simulation VPIVPUI
- Python is slow enough, moving back and forth Interface
between Python and Simulator is extra slow

- Can’t do top level integration
- In SV, can instantiate more than one module in
testbench and hook them up
- Can’t instantiate more than one module in cocotb
- If more modules are needed, have to create a
verilog wrapper top level module

Fix Outdated CocoTB Fork, Case Sensitivity (#1)

CocoTB Bus Extension .

Attach Wishbone Master to Bus
e CocoTB allows powerfu| abstraction of wbs = WishboneMaster(dut, "wbs", dut.wb_clk_ i,

buses width=32, # size of data bus
o Wishbone, AXI, etc. timeout=10, # in clock cycle number
o Verify your design against open signals_dict={"cyc": “cyc_i",
source standards "stb": "stb_i",
"we": "we_i",
"adr": Madr_i",
"datwr":"dat_i",
e Can encapsulate signals in an object "datrd”: "dat_o",
o Wishbone Example uses a vack”: "ack o",
dictionary to define signal names "sel”: "sel i" })

o i
Abstracted reads and writes # Create Write Operation

wb_op = WBOp(adr,dat,0,sel=0xF)
wbs.send_cycle([wb_op])

Create Read Operation

wb_op = WBOp(adr,None,9,sel=0xF)
read_resp = wbs.send_cycle([wb_op])

CocoTB Example

https://github.com/cocotb/cocotb/blob/master/examples/adder/tests/test_adder.py
https://github.com/cocotb/cocotb/blob/master/examples/simple_dff/test_dff.py

References

https://docs.cocotb.org/en/stable/
https://indico.cern.ch/event/776422/attachments/1769690/2874927/cocotb_talk.pdf
https://indico.cern.ch/event/776422/attachments/1769690/2874927/cocotb_talk.pdf
https://www.chipverify.com/systemverilog/systemverilog-class

